Results 61 to 70 of about 43,830 (285)
Endoplasmic reticulum visits highly active spines and prevents runaway potentiation of synapses
In hippocampal pyramidal cells, a subset of dendritic spines contain endoplasmic reticulum (ER). Here, the authors show that ER enters dendritic spines in a non-random manner, during high synaptic activity with the function of limiting synaptic strength.
Alberto Perez-Alvarez +5 more
doaj +1 more source
Microtubules in Dendritic Spine Development [PDF]
It is generally believed that only the actin cytoskeleton resides in dendritic spines and controls spine morphology and plasticity. Here, we report that microtubules (MTs) are present in spines and that shRNA knockdown of the MT plus-end-binding protein EB3 significantly reduces spine formation.
Jiaping, Gu +2 more
openaire +2 more sources
Molecularly engineered memristors integrating Ag nanoparticle–embedded synthetic DNA with quasi‐2D halide perovskites enable ultra‐low‐operational voltage, forming‐free resistive switching, and record‐low power density. This synergistic integration of customized DNA and 2D OHP in bio‐hybrid architecture enhances charge transport, reduces variability ...
Kavya S. Keremane +9 more
wiley +1 more source
Synapses and Dendritic Spines as Pathogenic Targets in Alzheimer’s Disease
Synapses are sites of cell-cell contacts that transmit electrical or chemical signals in the brain. Dendritic spines are protrusions on dendritic shaft where excitatory synapses are located.
Wendou Yu, Bingwei Lu
doaj +1 more source
Objectives To observe changes in actin and dendritic spines in the hippocampus after propofol anesthesia, and to evaluate the role of these changes in subsequent learning impairment in both young (3-month-old) and aged (20-month-old) male rats.
Xuena Zhang, Jie Li
doaj +1 more source
Membrane fusion‐inspired nanomaterials offer transformative potential in diagnostics by mimicking natural fusion processes to achieve highly sensitive and specific detection of disease biomarkers. This review highlights recent advancements in nanomaterial functionalization strategies, signal amplification systems, and stimuli‐responsive fusion designs,
Sojeong Lee +9 more
wiley +1 more source
Prevention of Neurite Spine Loss Induced by Dopamine D2 Receptor Overactivation in Striatal Neurons
Psychosis has been considered a disorder of impaired neuronal connectivity. Evidence for excessive formation of dopamine D2 receptor (D2R) – disrupted in schizophrenia 1 (DISC1) complexes has led to a new perspective on molecular mechanisms involved in ...
Peng Zheng +4 more
doaj +1 more source
Membrane vesicles derived from the probiotic Lacticaseibacillus casei BL23 demonstrate antimicrobial properties against Escherichia coli and a potential biological effect in improving the overall survival of C. elegans infected with Pseudomonas aeruginosa. These vesicles stimulated immune responses in primary cells without causing toxicity. Our results
Cecilia L. D'Antoni +11 more
wiley +1 more source
Diffusion laws in dendritic spines [PDF]
Dendritic spines are small protrusions on a neuronal dendrite that are the main locus of excitatory synaptic connections. Although their geometry is variable over time and along the dendrite, they typically consist of a relatively large head connected to the dendritic shaft by a narrow cylindrical neck.
David Holcman, Zeev Schuss
openaire +2 more sources
This work presents a novel, dynamically perfused, configurable microfluidic system for epidermis‐only (E and full‐thickness skin (FT SoC) growth, emulating human skin structure and barrier function. Upon TiO2 nanoparticle exposure, the system reveals compromised barrier integrity, reduced metabolic activity, increased permeability, and chemokine‐driven
Samantha Costa +7 more
wiley +1 more source

