Results 41 to 50 of about 15,676 (196)

Electrical Control of the Transduction Channels’ Gating Force in Mechanosensory Hair Cells

open access: yesAdvanced Science, EarlyView.
The inner ear's hair cells rely on mechanosensitive ion channels to convert vibrations of their hair‐bundle into electrical signals. We show that varying the electrical potential (U) across the sensory epithelium modulates a key determinant of mechanosensitivity—the gating force (FG)—by modulating the gating swing (d), ranging from the size of the ...
Achille Joliot   +2 more
wiley   +1 more source

Inner Ear Hair Cell Protection in Mammals against the Noise-Induced Cochlear Damage

open access: yesNeural Plasticity, 2018
Inner ear hair cells are mechanosensory receptors that perceive mechanical sound and help to decode the sound in order to understand spoken language. Exposure to intense noise may result in the damage to the inner ear hair cells, causing noise-induced ...
Muhammad Waqas   +5 more
doaj   +1 more source

Behavioral auditory thresholds and loss of ribbon synapses at inner hair cells in aged gerbils

open access: yesExperimental Gerontology, 2016
The potential contribution of auditory synaptopathy to age dependent hearing loss was studied in groups of young and old gerbils. The analysis of the number of inner hair cell ribbon synapses in aged gerbils (37.9±3.3months of age) revealed only a relatively small (11-17%) loss in the basal two thirds of the cochlea, while a more pronounced reduction ...
Otto, Gleich   +2 more
openaire   +2 more sources

Disruption of Hars2 in Cochlear Hair Cells Causes Progressive Mitochondrial Dysfunction and Hearing Loss in Mice

open access: yesFrontiers in Cellular Neuroscience, 2021
Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo.
Pengcheng Xu   +28 more
doaj   +1 more source

XIAP Stabilizes DDRGK1 to Promote ER‐Phagy and Protects Against Noise‐Induced Hearing Loss

open access: yesAdvanced Science, EarlyView.
Mechanism of GAS‐mediated protection against noise‐induced hearing loss (NIHL). Noise exposure activates the ATF4/eIF2α axis, downregulating XIAP and promoting DDRGK1 degradation, thereby inhibiting ER‐phagy and leading to hair cell (HC) death. GAS treatment rescues XIAP and DDRGK1 expression, reactivating ER‐phagy to mitigate HC loss, synaptic damage,
Lin Yan   +13 more
wiley   +1 more source

PTEN inhibitor bisperoxovanadium protects against noise-induced hearing loss

open access: yesNeural Regeneration Research, 2023
Studies have shown that phosphatase and tensin homolog deleted on chromosome ten (PTEN) participates in the regulation of cochlear hair cell survival. Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression.
Bei Fan   +9 more
doaj   +1 more source

Connexin 26 Functions as a Direct Transcriptional Regulator During the Cochlea Development

open access: yesAdvanced Science, EarlyView.
Connexin26 can not only form intercellular channels that mediate rapid communication on the cell membrane, but also enter the nucleus as a transcription factor to directly regulate the transcription of nuclear genes. In the developing cochlea, Cx26 can control the maturation of the molecular scissor ADAM10 by regulating the transcription of TspanC8 ...
Xiaozhou Liu   +8 more
wiley   +1 more source

Proteomic Analysis Reveals the Composition of Glutamatergic Organelles of Auditory Inner Hair Cells

open access: yesMolecular & Cellular Proteomics
In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3).
Andreia P. Cepeda   +8 more
openaire   +4 more sources

Gut–Metabolome–Proteome Interactions in Age‐Related Hearing Loss: Insights from Fecal Microbiota Transplantation and Multi‐Omics Analyses

open access: yesAdvanced Science, EarlyView.
Germ‐free (GF) mice receiving fecal microbiota transplantation (FMT) reveal microbiota‐dependent effects on auditory aging. Integrated metagenomic, metabolomic and proteomic profiling maps gut–inner ear network and highlights 5‐hydroxytryptophan (5‐HTP) as a microbiota‐linked metabolic hub in age‐related hearing loss (ARHL).
Ting Yang   +12 more
wiley   +1 more source

Traceless Regulation of Genetic Circuitry

open access: yesAdvanced Science, EarlyView.
Energy‐based, as opposed to molecular, control offers unprecedented improvements in key circuit parameters. This review summarizes the fundamentals of such traceless switches, categorizes them by trigger modalities, and compares and contrasts distinct advantages as well as shortcomings of each kind.
Gokberk Unal, Martin Fussenegger
wiley   +1 more source

Home - About - Disclaimer - Privacy