Results 61 to 70 of about 249,538 (351)
CCT4 promotes tunneling nanotube formation
Tunneling nanotubes (TNTs) are membranous tunnel‐like structures that transport molecules and organelles between cells. They vary in thickness, and thick nanotubes often contain microtubules in addition to actin fibers. We found that cells expressing monomeric CCT4 generate many thick TNTs with tubulin.
Miyu Enomoto +3 more
wiley +1 more source
Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones ...
openaire +3 more sources
Are microtubules tension sensors? [PDF]
AbstractMechanical signals play many roles in cell and developmental biology. Several mechanotransduction pathways have been uncovered, but the mechanisms identified so far only address the perception of stress intensity. Mechanical stresses are tensorial in nature, and thus provide dual mechanical information: stress magnitude and direction.
Hamant, Olivier +4 more
openaire +7 more sources
Microtubules in Polyomavirus Infection
Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection.
Lenka Horníková +2 more
doaj +1 more source
A Cre‐dependent lentiviral vector for neuron subtype‐specific expression of large proteins
We designed a versatile and modular lentivector comprising a Cre‐dependent switch and self‐cleaving 2A peptide and tested it for co‐expression of GFP and a 2.8 kb gene of interest (GOI) in mouse cortical parvalbumin (PV+) interneurons and midbrain dopamine (TH+) neurons.
Weixuan Xue +6 more
wiley +1 more source
This study used longitudinal transcriptomics and gene‐pattern classification to uncover patient‐specific mechanisms of chemotherapy resistance in breast cancer. Findings reveal preexisting drug‐tolerant states in primary tumors and diverse gene rewiring patterns across patients, converging on a few dysregulated functional modules. Despite receiving the
Maya Dadiani +14 more
wiley +1 more source
New tools and approaches are providing exciting new insights into the structure and function of motors and microtubules and their contributions to cell migration, mitosis, and neuronal function. Janel Titus, from the Wadsworth laboratory (University of Massachusetts, Amherst), discussed the regulation of the plus end–directed mitotic motor Eg5 by ...
Jonathon Howard, Pat Wadsworth
openaire +1 more source
The stochastic switching between microtubule growth and shrinkage is a fascinating and unique process in the regulation of the cytoskeleton. To understand it, almost all attention has been focused on the microtubule ends. However, recent research has revived the idea that tubulin dimers can also be exchanged in protofilaments along the microtubule ...
Manuel Théry +3 more
openaire +4 more sources
B‐cell chronic lymphocytic leukemia (B‐CLL) and monoclonal B‐cell lymphocytosis (MBL) show altered proteomes and phosphoproteomes, analyzed using mass spectrometry, protein microarrays, and western blotting. Identifying 2970 proteins and 316 phosphoproteins, including 55 novel phosphopeptides, we reveal BCR and NF‐kβ/STAT3 signaling in disease ...
Paula Díez +17 more
wiley +1 more source
A central question in plant cell development is how the cell wall determines directional cell expansion and therefore the final shape of the cell. As the major load-bearing component of the cell wall, cellulose microfibrils are laid down transversely to ...
Lei eLei +3 more
doaj +1 more source

