Neuronal plasticity in nematode worms [PDF]
Neuronal activity induces changes in the connectivity of a neuron called DVB in adult male nematode worms. This discovery provides an opportunity to study a fundamental process in this powerful model organism. Neuronal activity induces changes in the connectivity of a neuron called DVB in adult male nematode worms.
openaire +3 more sources
Self‐organized Criticality in Neuromorphic Nanowire Networks With Tunable and Local Dynamics
Memristive nanowire networks (NWNs) are shown to be electrically tunable to a critical state where specific local dynamics evaluated by multiterminal characterization are exploited as feature selection in nonlinear transformation (NLT) tasks.
Fabio Michieletti+3 more
wiley +1 more source
Carbon Nanotube 3D Integrated Circuits: From Design to Applications
As Moore's law approaches its physical limits, carbon nanotube (CNT) 3D integrated circuits (ICs) emerge as a promising alternative due to the miniaturization, high mobility, and low power consumption. CNT 3D ICs in optoelectronics, memory, and monolithic ICs are reviewed while addressing challenges in fabrication, design, and integration.
Han‐Yang Liu+3 more
wiley +1 more source
Unsupervised learning by a nonlinear network with Hebbian excitatory and anti-Hebbian inhibitory neurons [PDF]
This paper introduces a rate-based nonlinear neural network in which excitatory (E) neurons receive feedforward excitation from sensory (S) neurons, and inhibit each other through disynaptic pathways mediated by inhibitory (I) interneurons. Correlation-based plasticity of disynaptic inhibition serves to incompletely decorrelate E neuron activity ...
arxiv
The chromatin landscape of neuronal plasticity
Examining the links between neuronal activity, transcriptional output, and synaptic function offers unique insights into how neurons adapt to changing environments and form memories. Epigenetic markers, such as DNA methylation and histone modifications, have been implicated in the formation of not only cellular memories such as cell fate, but also ...
Erica Korb, Margaret Herre
openaire +4 more sources
Temperature‐Resilient Polymeric Memristors for Effective Deblurring in Static and Dynamic Imaging
A thermally stable organic memristor based on a thiadiazolobenzotriazole (TBZ) and 2,5‐Dioctyl‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione (DPP)‐based conjugated polymer is presented, demonstrating reliable, gradual resistance switching across a wide temperature range (153–573 K).
Ziyu Lv+15 more
wiley +1 more source
Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches [PDF]
Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different
arxiv
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana+2 more
wiley +1 more source
Neuron-level Balance between Stability and Plasticity in Deep Reinforcement Learning [PDF]
In contrast to the human ability to continuously acquire knowledge, agents struggle with the stability-plasticity dilemma in deep reinforcement learning (DRL), which refers to the trade-off between retaining existing skills (stability) and learning new knowledge (plasticity).
arxiv
Learning of Precise Spike Times with Membrane Potential Dependent Synaptic Plasticity [PDF]
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time.
arxiv