Results 101 to 110 of about 92,280 (151)
Yi‐Fei‐Jie‐Du‐Tang (YFJDT), a traditional Chinese medicine, has shown potential in lung cancer treatment by targeting key pathways. This study explores the mechanisms of YFJDT using bioinformatics, xenograft models, and A549 cells, demonstrating that YFJDT downregulates HIF1A, promotes ferroptosis, and inhibits epithelial‐mesenchymal transition (EMT ...
Shanshan Wang+6 more
wiley +1 more source
The axolotl's remarkable regenerative abilities decline with age, the causes may include the numerous repetitive elements within its genome. This study uncovers how Ty3 retrotransposons and coexpression networks involving muscle and immune pathways respond to aging and regeneration, suggesting that transposons respond to physiological shifts and may ...
Samuel Ruiz‐Pérez+8 more
wiley +1 more source
Current and Future Cornea Chip Models for Advancing Ophthalmic Research and Therapeutics
This review analyzes cornea chip technology as an innovative solution to corneal blindness and tissue scarcity. The examination encompasses recent developments in biomaterial design and fabrication methods replicating corneal architecture, highlighting applications in drug screening and disease modeling while addressing key challenges in mimicking ...
Minju Kim+3 more
wiley +1 more source
Hypoxia promotes the epithelial‐mesenchymal transition (EMT) of renal tubular epithelial cells via the SIRT1‐FoxO1‐FoxO3‐autophagy pathway, thereby resulting in the fibrosis of renal tubular epithelial cells. Activation of SIRT1 or induction of autophagy inhibits this process, alleviating hypoxia‐induced fibrosis.
Guangyu Wang+6 more
wiley +1 more source
Extracellular vesicles (EVs) play a dual role in diagnostics and therapeutics, offering innovative solutions for treating cancer, cardiovascular, neurodegenerative, and orthopedic diseases. This review highlights EVs’ potential to revolutionize personalized medicine through specific applications in disease detection and treatment.
Farbod Ebrahimi+4 more
wiley +1 more source
RhoA and Rac1 as Mechanotransduction Mediators in Colorectal Cancer
Analysing RhoA and Rac1 protein levels in Colorectal cancer (CRC) samples under mechanical strain highlights their potential as diagnostic markers. Monitoring their activity could offer valuable insights into how cancer spreads, paving the way for new approaches to better understand and diagnose colorectal cancer.
Sharda Yadav+5 more
wiley +1 more source
The manuscript examines preclinical murine and human models to study polycystic ovary syndrome (PCOS), delving into the cellular and molecular mechanisms underlying altered ovarian follicular dynamics. It explores the cellular interactions involved in normal and PCOS ovaries and outlines the current and novel strategies in the search for preclinical ...
Arturo Bevilacqua+5 more
wiley +1 more source
In this study, a new type of bioactive glass fiber ‐based composite magnesium phosphate bone cement is prepared and verified that its mechanical strength and biological properties. In addition, the cement may have played a biologically active role in the Notch and HIF signaling pathways.
Yuzheng Lu+12 more
wiley +1 more source
The Regulation of Trace Metal Elements in Cancer Ferroptosis
The induction of ferroptosis inhibits tumor growth, enhances anticancer efficacy, and overcomes drug resistance. Recent evidence shows nonferrous metal elements play a role in ferroptosis. This review focuses on how trace metals regulate ferroptosis processes like iron accumulation, lipid peroxidation, and antioxidant defense.
Xiaoyan Wang+5 more
wiley +1 more source
A metallic implant's higher stiffness compared to the surrounding bone leads to stress shielding problems, causing bone density reduction and bone growth interference in pediatric patients. 3D‐printed triply periodic minimal surface structures present a promising engineering solution.
Ali Ebrahimzadeh Dehaghani+4 more
wiley +1 more source