Results 41 to 50 of about 7,951 (196)
A Brief View of Molecular Modeling Approaches to P2 Receptors [PDF]
Purinergic receptors are a class of receptors distributed into two groups, P1 and P2. P1 receptors are activated by nucleosides, like adenosine, while nucleotides active P2 receptors.
Alberto, Anael V.P.+4 more
core +1 more source
Ontogeny of purinergic receptor-regulated Ca2+ signaling in mouse cortical collecting duct epithelium [PDF]
Changes in ATP-induced increase in {[}Ca2+], during collecting duct ontogeny were studied in primary monolayer cultures of mouse ureteric bud (UB) and cortical collecting duct (CCD) cells by Fura-PE3 fluorescence ratio imaging.
Borscheid, R.+4 more
core +1 more source
Activation of the P2Y2 receptor regulates bone cell function by enhancing ATP release [PDF]
Bone cells constitutively release ATP into the extracellular environment where it acts locally via P2 receptors to regulate bone cell function. Whilst P2Y2 receptor stimulation regulates bone mineralisation, the functional effects of this receptor in ...
Arnett, T R+5 more
core +2 more sources
G protein‐coupled receptor‐mediated autophagy in health and disease
G protein‐coupled receptors (GPCRs) constitute the largest and most diverse superfamily of mammalian transmembrane proteins. These receptors are involved in a wide range of physiological functions and are targets for more than a third of available drugs in the market. Autophagy is a cellular process involved in degrading damaged proteins and organelles
Devrim Öz‐Arslan+2 more
wiley +1 more source
The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases [PDF]
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic ...
Antonioli L.+3 more
core +1 more source
ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system
G protein‐coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important
Necla Birgül Iyison+15 more
wiley +1 more source
Purinergic Signalling: Therapeutic Developments
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and ...
Geoffrey Burnstock, Geoffrey Burnstock
doaj +1 more source
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease.
Davide Ferrari+4 more
doaj +1 more source
Purinergic receptor mediated calcium signalling in urothelial cells [PDF]
Non-neuronal ATP released from the urothelium in response to bladder stretch is a key modulator of bladder mechanosensation. Whilst non-neuronal ATP acts on the underlying bladder afferent nerves to facilitate sensation, there is also the potential for ...
Brierley, Stuart M+4 more
core +3 more sources
Progress on the development of Class A GPCR‐biased ligands
Class A G protein‐coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and
Paula Morales+20 more
wiley +1 more source