Results 171 to 180 of about 5,118,873 (324)

siRNA Delivery via Cross‐Linked Gelatin Microparticles Enables Targeted Modulation of Osteogenic‐Vascular Cross‐Talk: An Advanced Human 3D in Vitro Test System for Therapeutic siRNA

open access: yesAdvanced Healthcare Materials, EarlyView.
Osteogenic‐angiogenic cross‐talk is a vital prerequisite for vascularized bone regeneration. In this study, we investigated the effects of siRNA‐mediated silencing of two inhibitory proteins, Chordin and WWP‐1, via CaP‐NP‐loaded gelatin microparticles in osteogenically differentiated microtissues.
Franziska Mitrach   +7 more
wiley   +1 more source

An In Situ Embedded B‐MOF Sponge With Shape‐Memory for All‐in‐One Diabetic Wound Therapy

open access: yesAdvanced Healthcare Materials, EarlyView.
A smart shape‐memory sponge dressing (P1A3@B‐MOF) is developed for accelerated diabetic wound healing. It achieves pH‐responsive corelease of Zn2+ and salvianolic acid B, synergistically providing antibacterial action, repolarizing macrophages to the M2 phenotype, and promoting angiogenesis.
Hai Zhou   +11 more
wiley   +1 more source

A Tri‐Culture Heart‐on‐a‐Chip Platform With iPSC‐Derived Cardiac Cells for Predictive Cardiotoxicity Testing

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents the first entirely isogenic heart‐on‐chip, unifying cardiomyocytes, fibroblasts, and endothelial cells from a single iPSC source. The platform reveals a critical biological insight: the endothelium actively shields cardiac tissue from drug‐induced toxicity, challenging the predictive accuracy of conventional, avascular models for ...
Karine Tadevosyan   +12 more
wiley   +1 more source

Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics

open access: yesAdvanced Materials, EarlyView.
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang   +13 more
wiley   +1 more source

Fabrication, Properties, and Applications of Scaffolds for Bone Tissue Regeneration

open access: yesAdvanced Materials Technologies, EarlyView.
This review explores cutting‐edge biomaterials and fabrication techniques for scaffolds in bone tissue regeneration. It conducts a critical comparison of various strategies, meticulously analyzes the key contradictions in the field, and outlines an integrated development path spanning from biomaterial selection to clinical application, while ...
Shangsi Chen, Min Wang
wiley   +1 more source

Engineered Microfluidic Organoid Systems: New Paradigms for Menopause Mechanism Research and Personalized Medicine

open access: yesAdvanced Materials Technologies, EarlyView.
This review explores the integration of microfluidic technology with organoid systems as an innovative platform for studying menopausea complex multi‐organ condition. By enabling precise simulation of inter‐organ communication and hormone responses, microfluidic organoids offer a physiologically relevant model for investigating menopausal syndrome and ...
Qianyi Zhang   +4 more
wiley   +1 more source

Multiomics Analyses Reveal an Essential Role of Tryptophan in Treatment of csDMARDs in Rheumatoid Arthritis

open access: yesAdvanced Science, EarlyView.
Rheumatoid arthritis is a disease characterized by joint inflammation. Approximately 50% of patients show insufficient response to traditional synthetic disease‐modifying antirheumatic drugs. This study aims to elucidate differential molecular profiles of the mechanisms underlying drug responses through multi‐omics strategy.
Congcong Jian   +26 more
wiley   +1 more source

ROS Activated NETosis of Bone Marrow CD55+ Intermediate Mature Neutrophils Through HIF1α‐PADI4 Pathway to Initiate Bone Aging

open access: yesAdvanced Science, EarlyView.
In this study, we find CD55+ neutrophils show activated NETosis within bone marrow, induce BMSC senescence and osteogenesis inhibition, finally leading to bone aging initiation. Mechanistically, ROS synergizes with the CD55‐driven HIF1α‐PADI4 pathway to promote NETosis.
Yutong Guo   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy