Results 101 to 110 of about 183,209 (216)

Material‐Induced Nuclear Deformation Controls Chromatin Architecture in Adipose Stem Cells

open access: yesAdvanced Science, EarlyView.
Tuning cell and cytoskeleton mechanics modulated nuclear shape and heterochromatin organization in ASCs. Distinct cytoskeletal architectures induced nuclear morphologies from oblate to prolate ellipsoids. Large elongated cells with a structured actin cap exhibited high nuclear strain, driving nuclear envelope deformation and heterochromatin ...
Carlo F. Natale   +6 more
wiley   +1 more source

Epigenetics in ovarian cancer: premise, properties, and perspectives. [PDF]

open access: yes, 2018
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality.
Huang, Shuang   +16 more
core   +2 more sources

A Trypsin‐Like Serine Protease ZmNAL1a Fine‐Tunes Maize Floral Transition and Flowering Time

open access: yesAdvanced Science, EarlyView.
This study identifies a trypsin‐like serine protease, ZmNAL1a, that moves from leaves to the shoot apical meristem. ZmNAL1a promotes the floral transition by degrading TOPLESS‐like corepressor REL2, which thereby enhances the expression of key flowering genes through elevating histone acetylation and relieving REL2–ZmEREBP147‐mediated transcriptional ...
Nan Li   +15 more
wiley   +1 more source

Phase I dose-escalation study of the mTOR inhibitor sirolimus and the HDAC inhibitor vorinostat in patients with advanced malignancy. [PDF]

open access: yes, 2016
Preclinical models suggest that histone deacetylase (HDAC) and mammalian target of rapamycin (mTOR) inhibitors have synergistic anticancer activity. We designed a phase I study to determine the safety, maximum tolerated dose (MTD), recommended phase II ...
Falchook, Gerald S.   +17 more
core   +2 more sources

Targeting Lactate and Lactylation in Cancer Metabolism and Immunotherapy

open access: yesAdvanced Science, EarlyView.
Lactate, once deemed a metabolic waste, emerges as a central regulator of cancer progression. This review elucidates how lactate and its epigenetic derivative, protein lactylation, orchestrate tumor metabolism, immune suppression, and therapeutic resistance.
Jiajing Gong   +5 more
wiley   +1 more source

Histone deacetylase inhibition modulates cell fate decisions during myeloid differentiation

open access: yesHaematologica, 2010
Background The clinical use of chromatin-modulating drugs, such as histone deacetylase inhibitors, for the treatment of bone marrow failure and hematopoietic malignancies has increased dramatically over the last few years.
Marije Bartels   +4 more
doaj   +1 more source

Altered modulation of lamin A/C-HDAC2 interaction and p21 expression during oxidative stress response in HGPS [PDF]

open access: yes, 2018
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson-Gilford progeria, a severe LMNA-linked syndrome associated with bone resorption, cardiovascular disorders, and
Andrenacci, Davide   +13 more
core   +2 more sources

DNMT2‐m5C‐ACLY Axis Promotes Lenvatinib Resistance in Hepatocellular Carcinoma Through Histone Acetylation‐Mediated Notch Pathway

open access: yesAdvanced Science, EarlyView.
Lenvatinib resistance poses a major challenge in advanced hepatocellular carcinoma (HCC). This study reveals that DNMT2 upregulation is a key driver, which stabilizes ACLY mRNA via m5C modification and activates the Notch signaling pathway. Crucially, combining ACLY inhibitors with lenvatinib overcomes resistance and suppresses tumors, offering a ...
Shiguang Yang   +14 more
wiley   +1 more source

HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes [PDF]

open access: yes, 2018
Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process.
Adamo, Sergio   +9 more
core   +2 more sources

Acetylation Regulates ACSL4 Degradation Through Chaperone‐Mediated Autophagy to Alleviate Intervertebral Disc Degeneration

open access: yesAdvanced Science, EarlyView.
Intervertebral disc degeneration is triggered by ACSL4 accumulation‐mediated ferroptosis of nucleus pulposus cells due to CMA dysfunction. KAT2B promotes ACSL4 degradation via CMA through acetylation. AAV‐mediated LAMP2A delivery or engineered exosomes rescue nucleus pulposus cell senescence and disc degeneration.
Zhouwei Wu   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy