Results 141 to 150 of about 279,221 (285)
Microphysiological Systems of Lymphatics and Immune Organs
This review surveys recent progress in engineering lymphatic microenvironments and immune organoids within microphysiological systems, emphasizing innovative strategies to recreate the biochemical and biophysical complexity of native lymphatic tissues.
Ishita Jain +2 more
wiley +1 more source
Bioengineered Lymphatic Vessels in Synthetic Matrices to Study Breast Cancer Cell Functions
Lymphatic vessels are involved in cancer metastasis. To study the interplay between metastasizing cancer cells and lymphatic vessels under highly reproducible conditions, advanced in vitro models are required. In this work, 3D lymphatic networks are formed in biomimetic hydrogels and their interactions with invasive and non‐invasive cancer cell‐lines ...
Rodi Odabasi +7 more
wiley +1 more source
We measure the cell‐specific responses of administering infusible ECM (iECM) in acute myocardial infarction (MI) across multiple timepoints. Using single‐nucleus RNA sequencing and spatial transcriptomics, we measure macrophage activation, fibroblast remodeling, increased vascular development, lymphangiogenesis, cardioprotection, and neurogenesis ...
Joshua M. Mesfin +18 more
wiley +1 more source
Background: Chemokine receptors have been shown to play an important role in the development and metastatic spread of various malignancies. In this study, the gene expression profile of some key chemokine receptors involved in metastasis has been ...
Mohammad Amir MISHAN +6 more
doaj
We present a strategy to enhance magnetic hyperthermia therapy by modulating nanoparticle–cell interactions. Antibody‐functionalized magnetic nanoparticles targeting the low‐internalizing CCR9 receptor enable spatially controlled membrane anchoring, reducing aggregation and maximizing heat generation under alternating magnetic fields.
David Egea‐Benavente +5 more
wiley +1 more source
A bone substitute with gentamicin physically precipitated onto the surface of carbonate apatite exhibits prompt drug release, high bactericidal activity, and osteogenic capacity. Efficient antibacterial activity mitigates early postoperative neutrophil accumulation, the status of which may serve as a potential parameter for evaluating the antibacterial
Linghao Xiao +6 more
wiley +1 more source
Advances in Bioprinting to Model Immune‐Mediated Skin Diseases
This review explores how 3D bioprinting drives innovation in developing in vitro skin models that mimic immune‐mediated diseases. It highlights current technologies, key applications in studying skin pathologies, and emerging challenges. The review points toward future opportunities for improving disease modeling and advancing therapeutic and cosmetic ...
Andrea Ulloa‐Fernández +4 more
wiley +1 more source
HUCMSC‐Apo‐mvs enhance peripheral nerve repair by modulating the inflammatory microenvironment (IME), primarily through coordinated actions on three functional cells. They recruit macrophages and promote their polarization from pro‐inflammatory M1 to anti‐inflammatory M2 phenotypes, increasing secretion of IL‐10 and VEGF.
Haolin Liu +21 more
wiley +1 more source
This work presents ARC‐3D, a soft 3D model that recreates how brain support cells, called astrocytes, react to oxidative stress. The system visualizes rapid calcium changes and inflammatory signals, and shows how the drug KDS12025 can protect cells from damage. ARC‐3D offers a simple, reliable way to study early drivers of brain inflammation.
Ju‐Kang Kim +6 more
wiley +1 more source

