Results 151 to 160 of about 628,729 (310)
We have developed a smart hair‐repair ingredient based on β‐carboxylic acid amide that undergoes negative‐to‐positive charge conversion under mildly acidic conditions. The initial negative charge facilitates deep penetration into the hair fiber, while the subsequent positive charge enables re‐bonding with sulfonate groups in damaged hair keratin.
Sunyoung Kang +8 more
wiley +1 more source
Photosensitizing lipid nanoparticles (PLNPs) are engineered by incorporating cholesterol–PEG–pheophorbide a into MC3‐based LNPs and encapsulating GPX4‐targeting siRNA. Upon light activation, PLNPs generate reactive oxygen species (ROS) while silencing GPX4 to induce ferroptosis.
Ga‐Hyun Bae +9 more
wiley +1 more source
Antimicrobial peptide (AMP)‐loaded nanocarriers provide a multifunctional strategy to combat drug‐resistant Mycobacterium tuberculosis. By enhancing intracellular delivery, bypassing efflux pumps, and disrupting bacterial membranes, this platform restores phagolysosome fusion and macrophage function.
Christian S. Carnero Canales +11 more
wiley +1 more source
The study presents an antibiotic‐free strategy using medical fabrics coated with supramolecular assemblies of polyarginine and hyaluronic acid. These coatings showed strong antimicrobial and anti‐biofilm activity in vitro and in vivo, achieving major bacterial load reductions, including against MRSA.
Adjara Diarrassouba +18 more
wiley +1 more source
AngioPlate384 is a 384‐well open‐top platform that automates production of more than 100 miniaturized, perfusable blood vessels embedded in hydrogel and supported by stromal cells. Stromal‐endothelial co‐culture strengthens blood vessel barrier function and yields responses useful for translational planning. Scalable and automation‐ready, it suits drug
Dawn S. Y. Lin +14 more
wiley +1 more source
A high‐throughput in vivo mRNA LNP screening platform is developed and employed to screen a large library of 122 mRNA LNPs in vivo for delivery to immune, stromal, and parenchymal cells, identifying promising LNP candidates. A novel small particle flow cytometry‐based protein adsorption analysis method is utilized to interrogate protein corona ...
Alex G. Hamilton +17 more
wiley +1 more source
Porous Iridium Oxide Inverse Opal Catalysts Enable Efficient PEM Water Electrolysis
Porous iridium‐based inverse opal (IrOx‐IO) structures are introduced as high‐performance, unsupported PEM‐WE anode catalysts. Their electrochemical behavior is analyzed through porosity/surface area tuning, voltage breakdown, and circuit modeling.
Sebastian Möhle +4 more
wiley +1 more source
Helper and ionizable lipids play a crucial role in determining ApoE binding and subsequent liver tropism and LDLR‐mediated uptake. Ionizable lipids primarily govern the LDLR‐independent uptake pathway. This complementary interplay between lipid components ultimately governs LNP delivery performance and therapeutic efficacy in the liver.
Ashish Sarode +16 more
wiley +1 more source
A Cu/Ag‐Cu bilayer tandem catalyst is designed for a pyramid‐structured p‐Si photocathode, creating multiple and functionally distinct interfaces tailored to specific reaction steps and intermediate stabilization. This Cu/Ag‐Cu‐decorated p‐Si photocathode exhibits both high photocurrent and good selectivity for photoelectrochemical CO2 reduction to CH4.
Hao Wu +14 more
wiley +1 more source
Multiphysics‐Driven Assembly of Biomimetic Vesicles
Artificial extracellular vesicles, derived from cell membranes, are manufactured using a multiphysics‐integrated microfluidic platform that combines nanoknife membrane rupture, herringbone chaotic mixing, and acoustothermal modulation. This standardizable workflow enables the predictable control of vesicle formation and therapeutic loading, while ...
Timofei Solodko +16 more
wiley +1 more source

